$$\frac{\partial{} \alpha^r}{{}{\partial \delta}} = \frac{b \rho_{r}}{- b \delta \rho_{r} + 1} - \frac{\tau a{\left (\tau \right )}}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)} \left(\frac{\Delta_{1} b \rho_{r}}{\Delta_{2} b \delta \rho_{r} + 1} - \frac{\Delta_{2} b \rho_{r} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\left(\Delta_{2} b \delta \rho_{r} + 1\right)^{2}}\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right)$$
$$\frac{\partial{} \alpha^r}{{\partial \tau}{}} = - \frac{\tau \frac{d}{d \tau} a{\left (\tau \right )}}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right)} \log{\left (\frac{\Delta_{1} b \delta \rho_{r} + 1}{\Delta_{2} b \delta \rho_{r} + 1} \right )} - \frac{a{\left (\tau \right )}}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right)} \log{\left (\frac{\Delta_{1} b \delta \rho_{r} + 1}{\Delta_{2} b \delta \rho_{r} + 1} \right )}$$
$$\frac{\partial{^{2}} \alpha^r}{{}{\partial \delta^{2}}} = b \rho_{r}^{2} \left(\frac{\Delta_{1} \tau \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) a{\left (\tau \right )}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)^{2}} + \frac{\Delta_{2} \tau \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) a{\left (\tau \right )}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right)} + \frac{b}{\left(b \delta \rho_{r} - 1\right)^{2}}\right)$$
$$\frac{\partial{^{2}} \alpha^r}{{\partial \tau}{\partial \delta}} = - \frac{\tau \frac{d}{d \tau} a{\left (\tau \right )}}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)} \left(\frac{\Delta_{1} b \rho_{r}}{\Delta_{2} b \delta \rho_{r} + 1} - \frac{\Delta_{2} b \rho_{r} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\left(\Delta_{2} b \delta \rho_{r} + 1\right)^{2}}\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right) - \frac{a{\left (\tau \right )}}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)} \left(\frac{\Delta_{1} b \rho_{r}}{\Delta_{2} b \delta \rho_{r} + 1} - \frac{\Delta_{2} b \rho_{r} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\left(\Delta_{2} b \delta \rho_{r} + 1\right)^{2}}\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right)$$
$$\frac{\partial{^{2}} \alpha^r}{{\partial \tau^{2}}{}} = - \frac{1}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right)} \left(\tau \frac{d^{2}}{d \tau^{2}} a{\left (\tau \right )} + 2 \frac{d}{d \tau} a{\left (\tau \right )}\right) \log{\left (\frac{\Delta_{1} b \delta \rho_{r} + 1}{\Delta_{2} b \delta \rho_{r} + 1} \right )}$$
$$\frac{\partial{^{3}} \alpha^r}{{}{\partial \delta^{3}}} = 2 b^{2} \rho_{r}^{3} \left(- \frac{\Delta_{1}^{2} \tau \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) a{\left (\tau \right )}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)^{3}} - \frac{\Delta_{1} \Delta_{2} \tau \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) a{\left (\tau \right )}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)^{2} \left(\Delta_{2} b \delta \rho_{r} + 1\right)} - \frac{\Delta_{2}^{2} \tau \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) a{\left (\tau \right )}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right)^{2}} - \frac{b}{\left(b \delta \rho_{r} - 1\right)^{3}}\right)$$
$$\frac{\partial{^{3}} \alpha^r}{{\partial \tau}{\partial \delta^{2}}} = \frac{b \rho_{r}^{2}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)} \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) \left(\frac{\Delta_{1} \tau \frac{d}{d \tau} a{\left (\tau \right )}}{\Delta_{1} b \delta \rho_{r} + 1} + \frac{\Delta_{1} a{\left (\tau \right )}}{\Delta_{1} b \delta \rho_{r} + 1} + \frac{\Delta_{2} \tau \frac{d}{d \tau} a{\left (\tau \right )}}{\Delta_{2} b \delta \rho_{r} + 1} + \frac{\Delta_{2} a{\left (\tau \right )}}{\Delta_{2} b \delta \rho_{r} + 1}\right)$$
$$\frac{\partial{^{3}} \alpha^r}{{\partial \tau^{2}}{\partial \delta}} = - \frac{1}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)} \left(\tau \frac{d^{2}}{d \tau^{2}} a{\left (\tau \right )} + 2 \frac{d}{d \tau} a{\left (\tau \right )}\right) \left(\frac{\Delta_{1} b \rho_{r}}{\Delta_{2} b \delta \rho_{r} + 1} - \frac{\Delta_{2} b \rho_{r} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\left(\Delta_{2} b \delta \rho_{r} + 1\right)^{2}}\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right)$$
$$\frac{\partial{^{3}} \alpha^r}{{\partial \tau^{3}}{}} = - \frac{1}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right)} \left(\tau \frac{d^{3}}{d \tau^{3}} a{\left (\tau \right )} + 3 \frac{d^{2}}{d \tau^{2}} a{\left (\tau \right )}\right) \log{\left (\frac{\Delta_{1} b \delta \rho_{r} + 1}{\Delta_{2} b \delta \rho_{r} + 1} \right )}$$
$$\frac{\partial{^{4}} \alpha^r}{{}{\partial \delta^{4}}} = 6 b^{3} \rho_{r}^{4} \left(\frac{\Delta_{1}^{3} \tau \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) a{\left (\tau \right )}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)^{4}} + \frac{\Delta_{1}^{2} \Delta_{2} \tau \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) a{\left (\tau \right )}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)^{3} \left(\Delta_{2} b \delta \rho_{r} + 1\right)} + \frac{\Delta_{1} \Delta_{2}^{2} \tau \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) a{\left (\tau \right )}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)^{2} \left(\Delta_{2} b \delta \rho_{r} + 1\right)^{2}} + \frac{\Delta_{2}^{3} \tau \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) a{\left (\tau \right )}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right)^{3}} + \frac{b}{\left(b \delta \rho_{r} - 1\right)^{4}}\right)$$
$$\frac{\partial{^{4}} \alpha^r}{{\partial \tau}{\partial \delta^{3}}} = \frac{2 b^{2} \rho_{r}^{3}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)} \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) \left(- \frac{\Delta_{1}^{2} \tau \frac{d}{d \tau} a{\left (\tau \right )}}{\left(\Delta_{1} b \delta \rho_{r} + 1\right)^{2}} - \frac{\Delta_{1}^{2} a{\left (\tau \right )}}{\left(\Delta_{1} b \delta \rho_{r} + 1\right)^{2}} - \frac{\Delta_{1} \Delta_{2} \tau \frac{d}{d \tau} a{\left (\tau \right )}}{\left(\Delta_{1} b \delta \rho_{r} + 1\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right)} - \frac{\Delta_{1} \Delta_{2} a{\left (\tau \right )}}{\left(\Delta_{1} b \delta \rho_{r} + 1\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right)} - \frac{\Delta_{2}^{2} \tau \frac{d}{d \tau} a{\left (\tau \right )}}{\left(\Delta_{2} b \delta \rho_{r} + 1\right)^{2}} - \frac{\Delta_{2}^{2} a{\left (\tau \right )}}{\left(\Delta_{2} b \delta \rho_{r} + 1\right)^{2}}\right)$$
$$\frac{\partial{^{4}} \alpha^r}{{\partial \tau^{2}}{\partial \delta^{2}}} = \frac{b \rho_{r}^{2}}{R T_{c} \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)} \left(\Delta_{1} - \frac{\Delta_{2} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\Delta_{2} b \delta \rho_{r} + 1}\right) \left(\frac{\Delta_{1}}{\Delta_{1} b \delta \rho_{r} + 1} + \frac{\Delta_{2}}{\Delta_{2} b \delta \rho_{r} + 1}\right) \left(\tau \frac{d^{2}}{d \tau^{2}} a{\left (\tau \right )} + 2 \frac{d}{d \tau} a{\left (\tau \right )}\right)$$
$$\frac{\partial{^{4}} \alpha^r}{{\partial \tau^{3}}{\partial \delta}} = - \frac{1}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right) \left(\Delta_{1} b \delta \rho_{r} + 1\right)} \left(\tau \frac{d^{3}}{d \tau^{3}} a{\left (\tau \right )} + 3 \frac{d^{2}}{d \tau^{2}} a{\left (\tau \right )}\right) \left(\frac{\Delta_{1} b \rho_{r}}{\Delta_{2} b \delta \rho_{r} + 1} - \frac{\Delta_{2} b \rho_{r} \left(\Delta_{1} b \delta \rho_{r} + 1\right)}{\left(\Delta_{2} b \delta \rho_{r} + 1\right)^{2}}\right) \left(\Delta_{2} b \delta \rho_{r} + 1\right)$$
$$\frac{\partial{^{4}} \alpha^r}{{\partial \tau^{4}}{}} = - \frac{1}{R T_{c} b \left(\Delta_{1} - \Delta_{2}\right)} \left(\tau \frac{d^{4}}{d \tau^{4}} a{\left (\tau \right )} + 4 \frac{d^{3}}{d \tau^{3}} a{\left (\tau \right )}\right) \log{\left (\frac{\Delta_{1} b \delta \rho_{r} + 1}{\Delta_{2} b \delta \rho_{r} + 1} \right )}$$